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Abstract

A semi-analytical finite element (SAFE) method is presented for analyzing the wave propagation in viscoelastic

axisymmetric waveguides. The approach extends a recent study presented by the authors, in which the general SAFE

method was extended to account for material damping. The formulation presented in this paper uses the cylindrical

coordinates to reduce the finite element discretization over the waveguide cross-section to a mono-dimensional mesh. The

algorithm is validated by comparing the dispersion results with viscoelastic cases for which a Superposition of Partial Bulk

Waves solution is known. The formulation accurately predicts dispersion properties and does not show any missing root.

Applications to viscoelastic axisymmetric waveguides with varying mechanical and geometrical properties are presented.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Guided ultrasonic waves (GUWs) provide a highly efficient method for the non-destructive evaluation
(NDE) and the structural health monitoring (SHM) of waveguides such as beam-like or plate-like structures.
Compared to ultrasonic bulk waves, the use of GUWs provides: (a) longer inspection range, (b) larger
versatility owing to dispersive and multimodal nature and (c) complete coverage of the waveguide cross-
section. These advantages can be fully exploited only once the complexities of guided wave propagation are
unveiled and managed for the given test structure.

These complexities include the existence of multiple modes that can propagate simultaneously, and the
frequency-dependent velocities and attenuation (dispersive behavior). For example, the knowledge of the wave
ee front matter r 2008 Elsevier Ltd. All rights reserved.

v.2008.04.028

ing author. Tel.: +39 051 2093504; fax: +39 051 2093594.

ess: alessandro.marzani@mail.ing.unibo.it (A. Marzani).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2008.04.028
mailto:alessandro.marzani@mail.ing.unibo.it


ARTICLE IN PRESS
A. Marzani et al. / Journal of Sound and Vibration 318 (2008) 488–505 489
velocity is important for mode identification. Similarly, the knowledge of those mode–frequency combinations
propagating with minimum attenuation losses helps maximizing the inspection coverage.

To date, among others, Superposition of Partial Bulk Waves (SPBW) and Semi-Analytical Finite Element
(SAFE) methods are the most efficient tools for modeling GUWs propagation. SPBW methods are well-
established analytical algorithms in which the wave equation is formulated via constructive interference of
partial bulk waves with respect to the waveguide boundary conditions. For damped and/or leaky waves
solutions are usually obtained by searching for those combinations of frequency and complex wavenumber
that satisfy the wave equation. Minimum searching routines that rely on the slope [1] or on the local minima
[2] of the wave equation characteristic function are generally used. A comprehensive literature review on
SPBW methods in cylindrical and plate-like systems can be found in Refs. [3] and [2], respectively.

In SAFE methods, finite elements over the waveguide cross-section are coupled to harmonic functions along
the wave propagation direction to describe the wave displacement field. The application of a variational
scheme, leads the governing wave equation to be defined by a system of algebraic equations having the
frequency and wavenumber as unknowns. Guided wave solutions are then obtained by using standard
routines for eigenvalue problems.

The groundwork for the SAFE method is attributed to Nelson, Dong and co-authors [4,5] that successfully
formulated the SAFE wave equations for elastic layered orthotropic cylinders and plates by means of a mono-
dimensional cross-section interpolation.

Two years later, Aalami [6], introducing a bi-dimensional discretization, extended the technique formulating
the wave equation for a square rod and demonstrated that the SAFE method was applicable to waveguides of
arbitrary cross-section.

Afterwards, the SAFE method has been effectively used to model guided wave propagation in anisotropic
composite cylinders [7–9], laminated composite plates [10–12], wedges [13], rails [14,15], functionally graded
cylinders [16], piezoelectric plates [17], laminated piezoelectric cylinders [18] and channel beams [19].

The focus of these works was the characterization of the propagative and evanescent guided modes in
waveguides with neither material damping nor energy leakage, i.e. without attenuation. Due to great
importance of attenuation on GUWs propagation a need to extend the SAFE approach to waveguides with
material damping exists.

A common approach to introduce damping is to account for hysteresis by considering the viscous properties
of materials. Shorter [20], for example, presented a SAFE formulation capable to calculate the damping loss
factor of propagative guided modes in laminates by considering linear viscoelastic materials.

More recently, Bartoli et al. [21] proposed a SAFE scheme that, accounting for linear viscoelastic materials,
is capable of extracting GUWs dispersive features, such attenuation and energy velocity, in damped
waveguides. The algorithm in Ref. [21] has been validated by comparing the results with several SPBW
solutions found in literature [22–25] and it has been successfully used to model GUWs propagation in
hysteretic composite joints [26,27].

The present study expands the SAFE formulation in Ref. [21] by exploiting cylindrical coordinates. For
axisymmetric waveguides, such extension allows to reduce the bi-dimensional discretization to a single radial
line of mono-dimensional elements, improving the algorithm efficiency and accuracy. The SAFE results have
been compared to SPBW solutions for an elastic copper tube filled with viscoelastic bitumen and for a steel
pipe coated by a thin layer of viscoelastic bitumen. Dispersion results are also presented for a viscoelastic
three-layer system consisting in a steel strand embedded in grout and concrete. To the authors’ knowledge, no
work has been published on the SAFE formulation of axisymmetric waveguides with viscoelastic losses.
2. SAFE damped wave equation

2.1. Problem statement

Let us consider an infinitely long, axisymmetric waveguide immersed in vacuum with the cross-section
laying in the r�y plane, as shown in Fig. 1(a). In the most general case, the waveguide is composed of several
anisotropic viscoelastic axisymmetric layers, with constant material properties along the axial z-direction.
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Fig. 1. (a) Schematic representation of a multilayered hollow cylinder, (b) representation of the through-thickness mono-dimensional

finite element mesh, (c) eth mono-dimensional quadratic finite element with three degrees of freedom per node.

A. Marzani et al. / Journal of Sound and Vibration 318 (2008) 488–505490
For an harmonic wave propagating along the axial direction, the displacement uðx; tÞ ¼ ur uy uz½ �T, strain
eðx; tÞ ¼ �rr �yy �zz �yz �rz �ry½ �T and stress rðx; tÞ ¼ srr syy szz syz srz sry½ �T complex vectors at a point x � ðr; y; zÞ
and time t can be described as:

u ¼ AðrÞeiðnyþxz�otÞ; e ¼ Lu; r ¼ ~C e (1)

where AðrÞ ¼ Ar Ay Az½ �T is the 3� 1 polarized amplitude vector, n is the circumferential order number, x is the
axial wavenumber, o is the wave circular frequency and the superscript T represents a transpose vector.
In Eq. (1) L is the compatibility operator in cylindrical coordinates for infinitesimal strain and ~C is complex
constitutive matrix that describes the viscoelastic properties of the material [28].

2.2. Axisymmetric SAFE formulation

A finite element mono-dimensional mesh through the thickness of the waveguide (see Fig. 1(b)) is adopted
to approximate the displacement u as uh ¼ Nqeiðnyþxz�otÞ, where N is the matrix of the shape functions and q is
the vector of nodal displacements. Assuming an isentropic condition, where heat conduction is neglected and
energy dissipative processes are much less important than processes which conserve energy, the application of
the Hamilton’s variational principle leads to [20]:

[nel
e¼1

Z þ1
�1

Z 2p

0

Z r
ðeÞ
o

r
ðeÞ
i

½dðLuhÞ
T ~C
ðeÞ
Luh � o2dðuhÞ

TrðeÞuh�rdrdy dz

( )
¼ 0 (2)

where nel is the total number of elements in the mesh, r(e) and ~C
ðeÞ

are the mass density and the complex
constitutive matrix of the eth element delimited by the inner and outer radius ri

(e) and ro
(e), as indicated in

Fig. 1(b). Common algebra and standard finite element assembling procedure leads to:

Aðn;oÞ � xBðn;oÞ½ �2MU ¼ 0 (3)

where U is the global vector of nodal displacements and the subscript 2M indicates the equation dimension.
The equations given in Ref. [29] for the calculation of the matrices A and B for undamped media still hold
when material damping is included. However, in this case, these matrices result to be complex as a result of the
complex stiffness matrices ~C. Eq. (3) is the final wave equation for damped waveguides that for a given order
mode n can be solved for each input frequency, once the complex stiffness matrices for the materials at that
frequency are known [21].

2.3. Remarks on the complex stiffness matrix

Herein an hysteretic (structural) frequency independent rheological model is assumed [30–32]. For isotropic
materials, the coefficients ~Cij of the complex stiffness matrix depend only on the two complex Lamè moduli,
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~m ¼ r~c2S and ~l ¼ r½~c2L � 2~c2S�, that can be calculated by means of the following constants [31,32]:

~cL;S ¼ cL;S 1þ i
kL;S

2p

� ��1
(4)

where cL,S (m s�1) and kL,S (Np l�1) are the material longitudinal and shear bulk wave speeds and
attenuations, respectively.

This rheological model, often assumed in literature due to its straightforward implementation, can
accurately represent the behavior of a limited number of materials and its precision is restricted to finite
frequency ranges. However, this rheological model was employed to demonstrate the reliability of the SAFE
formulation in the calculation of the dispersive attenuation curves for axially symmetric waveguides. It should
be noted that, as previously discussed by the authors in Ref. [21], the SAFE method can be extended to
different rheological models as the Kelvin–Voigt model where the attenuation of bulk waves is frequency
dependent.

Future work will consider the extension of this SAFE formulation to others rheological models,
such as the linear standard solid model, already implemented in analytically based formulation for plate
waves [33].

3. Guided wave features

For viscoelastic materials solving Eq. (3) for a given input frequency o yields m ¼ 1–2M complex
eigenvalues xm

¼ xm
Re þ ixm

Im and the corresponding eigenvectors Um ¼ Um
Re þ iUm

Im. Only half of the 2M roots
of the dispersion relation are independent (xm). The remaining M solutions are defined as �x̄

m
, where the

overbar means complex conjugate.
From the mth eigenvalue xm the phase velocity cm

ph ¼ o=xm
Re ðms�1Þ and the attenuation attm ¼ xm

Im ðNpm�1Þ
for the mth guided mode are obtained. From the corresponding eigenvector Um, instead, the nodal
displacement vector qm for each finite element in the mesh (e ¼ 1–nel) can be extracted and the displacement
uh

m, strain eh
m and stress rh

m at a point reconstructed. The time averaged strain and kinetic energy densities at
a point are then obtained as:

hSm
iT ¼

1

4
Re½ðrm

h Þ
Tēm

h � ðJm
�3Þ (5)

hKmiT ¼
1

4
rð_um

h Þ
T _̄u

m

h ðJm�3Þ (6)

where h� � � iT ¼ ð1=TÞ
R T

0 ð� � �Þ dt is the time-averaging operator and T ¼ 2p/o is the period [36]. For the mth
mode, the power flow density vector at a given point, also known as the Poynting vector, can be obtained by
time-averaging over a unit period the product of the stress tensor and the velocity vector:

hPmiT ¼ Pm
r Pm

y Pm
z

h iT
¼ �

1

2
Re ~rm

h _̄u
m

h

� �
ðJ s�1m�2Þ (7)

where ~rm
h is the conventional 3� 3 stress tensor [37].

The representation of the Poynting vector over the waveguide cross-section is useful to show how the energy
is flowing in the structure, for example the depth at which the greatest transmission of energy takes place, or
the manner in which energy transmits from one layer to the adjacent one. Note that for GUWs propagating in
the z-direction, the Poynting vector component in the circumferential direction is zero, Py

m
¼ 0. In addition, if

there is no leakage or damping, also the component in the radial direction is zero, Pr
m
¼ 0, i.e. the power flow

is entirely in the direction of the wave propagation [35].
The rate at which mth mode energy is transmitted along the structure is indicated by the mode power flow,

PFm, which can be obtained by integrating over the waveguide cross-section O the component of the Poynting
vector in the propagation direction [38]:

PF m ¼

Z
O
ðPm � ẑÞdO ¼ 2p

Z Ro

Ri

Pm
z rdr ðJ s�1Þ (8)



ARTICLE IN PRESS
A. Marzani et al. / Journal of Sound and Vibration 318 (2008) 488–505492
The wave energy velocity for the mth mode, Ve
m, can be finally obtained as the ratio of the mode power flow

and the total energy density (kinetic and strain) for the whole cross-section:

Vm
e ¼ PF m 2p

Z Ro

Ri

½hSmiT þ hK
miT �rdr

� ��1
ðms�1Þ (9)

Since quadratic mono-dimensional elements were adopted in the formulation (see Fig. 1(c)), an exact three
point Gaussian integration was used in Eqs. (8) and (9) to perform the spatial integration through the
thickness of the waveguide.

4. Numerical validation of the SAFE formulation

For the purpose of validating the accuracy of the proposed formulation, the SAFE cut-off
frequencies fcut

m of a scheduled 4-in ANSI 40 steel pipe were compared with those calculated with a SPBW
algorithm [39].

Since cut-off frequencies do not have meaning in damped waveguides, material damping was not
considered. Geometrical and material properties of the pipe are defined in Table 1. For several refined meshes
(nel ¼ 1,2,4,8,16,32) the SAFE cut-off frequencies were calculated for a given circumferential wavenumber n

assuming x ¼ 0. The SPBW cut-off frequencies were calculated with a zero finding routine based on the
Ridder’s method considering a maximum frequency tolerance of 1� 10�5Hz. In Table 2 the SAFE and SPBW
cut-off frequencies for the co-existing torsional T(0, j), longitudinal L(0, j) and first-order flexural modes
F(1, j), are given in the 0–1000 kHz frequency range.

Torsional modes were analyzed considering only the dof in the W-direction. Complementarily, the r�z dof
were used to describe the longitudinal modes. Therefore, for a mesh with one quadratic finite element (nel ¼ 1)
only 3 dof were available to extract the pure torsional modes and the T(0,4) could not be calculated. Likewise,
for nel ¼ 1, the longitudinal L(0,7), flexural F(1,10) and F(1,11) modes were not found. As expected, SAFE
slightly overestimates the cut-off frequencies because discretized systems are stiffer than real structures,
producing higher natural frequencies. However, by increasing the number of finite elements, the SAFE
solution converges rapidly to the SPBW one.
Table 1

Waveguides geometrical and acoustic material properties

Case Material Inner radius

Ri (mm)

Outer

radius Ro

(mm)

Density r
(kgm�3)

Long. bulk

speed cL

(m s�1)

Shear bulk

speed cT

(m s�1)

Long. bulk

attenuation

kL (Np l�1)

Shear bulk

attenuation

kT (Np l�1)

5.1 TML 24515 45/60

bitumen corea
0 6.8 970 – 430 – 1.350

Elastic copper

pipea
6.8 7.5 8900 – 2240 – 0

5.2 Elastic 4-in 40

ANSI steel pipeb
51.181 57.150 7800 5900 3190 0 0

Viscoelastic

bitumen coatingb
57.150 57.3024 1500 1860 750 0.2688 1.131

5.3 Elastic steel

strandc
0 7.62 7932 5960 3260 0.003 0.008

Viscoelastic groutc 7.62 31.75 1600 2810 1700 0.043 0.100

Viscoelastic

concreted
31.75 76.20 2152 3758 2090 0.186 0.229

aAcoustic properties from Ref. [34].
bAcoustic properties obtained by those in Ref. [32].
cAcoustic properties from Ref. [25].
dAcoustic properties from Ref. [41].
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Table 2

Cut-off frequencies for a 4 in. 40 ANSI steel pipe in the range 0–1000 kHz for an increasing number of finite elements nel used in the SAFE

mesh

Guided mode Cut-off frequencies (kHz)

SAFE number of finite elements SPBW solution

nel ¼ 1 nel ¼ 2 nel ¼ 4 nel ¼ 8 nel ¼ 16 nel ¼ 32

T(0,2) 295.3614 268.8374 267.8991 267.8348 267.8307 267.8306 267.8304

T(0,3) 659.2486 589.6497 536.7450 534.8738 534.7456 534.7373 534.7368

T(0,4) no data 965.2810 815.0922 802.8491 801.9137 801.8511 801.8479

L(0,2) 15.7913 15.7913 15.7913 15.7912 15.7913 15.7533 15.7913

L(0,3) 294.7276 268.3422 267.4058 267.3417 267.3376 267.3374 267.3374

L(0,4) 544.9717 496.3560 494.6273 494.5090 494.5014 494.4992 494.5009

L(0,5) 658.9309 589.3322 536.4968 534.6265 534.4984 534.4902 534.4897

L(0,6) 1218.7344 964.9626 814.9279 802.6840 801.7489 801.6872 801.8630

L(0,7) no data 1089.9189 992.2911 988.8335 988.5967 988.5805 988.5805

F(1,2) 9.3779 9.3779 9.3779 9.3779 9.3783 9.3708 9.3779

F(1,3) 22.2642 22.2641 22.2641 22.2642 22.2651 22.2590 22.2641

F(1,4) 294.8777 268.5068 267.5711 267.5070 267.5029 267.5025 267.5026

F(1,5) 295.9331 269.4079 268.4678 268.4033 268.3992 268.3987 268.3990

F(1,6) 544.8441 496.0422 493.9608 493.8121 493.8024 493.7999 493.8018

F(1,7) 658.9978 589.4070 536.5790 534.7090 534.5809 534.5725 534.5722

F(1,8) 659.6892 590.2145 537.6638 535.8220 535.6958 535.6870 535.6871

F(1,9) 1218.7931 965.0083 814.9812 802.7389 801.8038 801.7420 801.7380

F(1,10) no data 965.2204 815.0712 802.8292 801.8941 801.8311 801.8283

F(1,11) no data 1090.1726 992.4761 989.0179 988.7802 988.7638 988.7639

Analytical solution is obtained by a SPBW formulation from Ref. [39].
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For the same waveguide, a second accuracy test was performed by comparing the axial wavenumbers at the
frequency of 1MHz. The SAFE wavenumbers were obtained for different meshes by solving Eq. (3) at the
desired frequency. For the SPBW algorithm a maximum frequency tolerance of 1� 10�5Hz and a maximum
phase speed tolerance of 1� 10�5m s�1 were used in the roots searching routine. Results are summarized in
Table 3.

It can be seen in this case that the SAFE formulation underestimates the wavenumbers. In fact, in
discretized (stiffer) structures, guided modes propagate with higher phase speed, i.e. lower wavenumber.
Again, with increasing number of elements in the mesh, the SAFE wavenumbers converge rapidly to the
SPBW solutions.

The results presented in Tables 2 and 3 confirm that the SAFE meshing criteria proposed by Galan and
Abascal [40] for homogeneous plate-like waveguides is also valid for the case of axis symmetric homogeneous
waveguides. This criterion guarantees SAFE solution accuracy by adopting finite elements of maximum
dimension Lmax ¼ lT/b, where lT ¼ 2pcT/omax, b ¼ 4 for quadratic finite elements and omax ¼ 2pfmax is the
highest circular frequency for which the solution is sought. In this example, where cT ¼ 3190m/s and
fmax ¼ 1MHz, the maximum element length is Lmax ¼ 0.7975mm. Therefore, for the system under study
(wall-thickness Ro�Ri ¼ 5.969mm) the above criteria is satisfied by considering a minimum of eight finite
elements in the mesh.

It can be observed in Table 2 that for nel ¼ 8, the maximum error on the cut-off frequencies is
around 0.12% for the modes T(0,4), F(1,9) and F(1,10) while the maximum error on the wavenumbers,
reported in Table 3, is around 1.4% for the longitudinal L(0,7) and flexural F(1,11) mode. The correctness of
the formulation was also verified proving that the boundary conditions for cross-sectional distribution
of multiple guided wave features (displacements, Poynting vector components, energy velocity, etc.) were
respected.
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Table 3

Guided modes wavenumbers for a 4 in. 40 ANSI steel pipe at 1MHz for increasing number of finite elements nel used in the SAFE mesh

Modes @ 1000kHz Wavenumber (m�1)

SAFE number of finite elements SPBW solution

nel ¼ 1 nel ¼ 2 nel ¼ 4 nel ¼ 8 nel ¼ 16 nel ¼ 32

T(0,1) 1969.6505 1969.6505 1969.6505 1969.6505 1969.6506 1969.6502 1969.6506

T(0,2) 1881.7758 1897.1390 1897.6538 1897.6891 1897.6913 1897.6913 1897.6915

T(0,3) 1481.0296 1590.8062 1661.8818 1664.2207 1664.3805 1664.3909 1664.3915

T(0,4) no data 514.4999 1141.0802 1174.2706 1176.7477 1176.9131 1176.9218

L(0,1) 2012.4827 2056.8344 2110.6264 2132.4272 2135.4840 2135.7271 2135.7426

L(0,2) 1901.4722 2023.9905 2085.9396 2110.1576 2113.4772 2113.7391 2113.7561

L(0,3) 1184.9864 1507.0610 1706.5366 1715.5892 1716.2380 1716.2822 1716.2832

L(0,4) 1030.3750 1123.8164 1205.9364 1230.2622 1232.3134 1232.4523 1232.4598

L(0,5) 719.0069 843.4473 977.7119 998.4361 1000.0818 1000.1917 1000.1992

L(0,6) no data 659.1574 958.2004 973.1884 974.4192 974.5025 974.5074

L(0,7) no data no data 120.4295 145.7714 147.7086 147.8419 147.8439

F(1,1) 2012.3988 2056.7524 2110.5467 2132.3483 2135.4052 2135.6484 2135.6638

F(1,2) 1969.5636 2023.9054 2085.8566 2110.0754 2113.3952 2113.6572 2113.6741

F(1,3) 1901.3838 1969.5640 1969.5641 1969.5641 1969.5641 1969.5642 1969.5641

F(1,4) 1881.6825 1897.0482 1897.5631 1897.5984 1897.6006 1897.6010 1897.6008

F(1,5) 1480.9147 1590.6996 1706.4379 1715.4908 1716.1396 1716.1841 1716.1849

F(1,6) 1184.8409 1506.9465 1661.7775 1664.1167 1664.2765 1664.2878 1664.2875

F(1,7) 1030.2084 1123.6643 1205.7965 1230.1255 1232.1769 1232.3159 1232.3233

F(1,8) 718.7688 843.2457 1140.9286 1174.1227 1176.6001 1176.7667 1176.7742

F(1,9) no data 658.8970 977.5362 998.2641 999.9101 1000.0202 1000.0276

F(1,10) no data 514.1672 958.0220 973.0130 974.2440 974.3275 974.3321

F(1,11) no data no data 119.0030 144.5963 146.5492 146.6842 146.6856

Analytical solution is obtained by a SPBW formulation from Ref. [39].
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5. Numerical applications

5.1. Elastic copper tube filled with elastic and viscoelastic bitumen

The first example examines an isotropic elastic copper pipe filled with viscoelastic TML 24515 45/60
bitumen. Wave propagation analysis in this system was performed by a SPBW formulation in Ref. [34]. In this
paper, Simonetti and Cawley [34] proposed an NDE technique to estimate the bulk properties of the
viscoelastic core by measuring the speed and attenuation of the fundamental Torsional guided mode. In the
0–150 kHz frequency range the bitumen was found behaving as a hysteretic media with constant complex
shear moduli ~m ¼ r~c2S. Geometrical and material properties are given in Table 1.

For the SAFE calculation, the elastic stiffness tensor C for the copper and the constant complex stiffness
matrix ~C for the bitumen were obtained as indicated in Section 2.3. Since the longitudinal bulk properties do
not have an effect on the T(0,j) modes for this system were arbitrarily assumed equal to zero.

For a maximum frequency fmax ¼ 150 kHz, eleven quadratic elements, ten in the core and one in the pipe,
were used to satisfy the mesh criteria proposed in Ref. [40].

Torsional modes were analyzed by considering only the 23 uy dof over the total [nel� (nn�1)+1]� ndof ¼ 69
dof, where nn ¼ 3 is the number of nodes per element and ndof ¼ 3 is the number of dof per node, i.e. ur, uy
and uz.

SAFE results for the Torsional modes are shown in Fig. 2. On the left column the phase velocity (a), energy
velocity (b) and attenuation (c) dispersion curves are given assuming the bitumen core as an elastic media
neglecting the bulk shear wave attenuation (undamped system). The same dispersive features are presented on
the right column considering the bitumen core as a viscoelastic material (damped system). In all these plots,
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Fig. 2. Torsional modes for a copper (r ¼ 8900kgm�3, cT ¼ 2240m s�1, kT ¼ 0Np l�1) pipe with inner radius 6.80mm and wall

thickness 0.70mm, filled with bitumen. (a) Phase velocity, (b) energy velocity and (c) attenuation results considering the bitumen as an

elastic medium (r ¼ 970 kgm�3, cT ¼ 430m s�1, kT ¼ 0Npl�1). (d) Phase velocity, (e) energy velocity and (f) attenuation considering the

bitumen as a viscoelastic medium (r ¼ 970 kgm�3, cT ¼ 430m s�1, kT ¼ 1.35Npl�1). The dashed line in (a) and (b) correspond to the

non-dispersive fundamental Torsional mode for the empty copper pipe Te(0,1).
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roots with att4130 dBm�1 were marked with a brighter color. The dashed line in Fig. 2(a) and (b) indicates
the non-dispersive fundamental Torsional mode for the empty copper pipe Te(0,1).

For the undamped system, among the 23 possible independent roots at each frequency the number
of propagative (real wavenumber) modes vary from one, at near zero frequency, to five, at 150 kHz (see
Fig. 2(a)). The remaining roots represent the evanescent modes (imaginary wavenumber). In Fig. 2(c), only the
evanescent modes with atto10 dBmm�1 are shown.

The fundamental T(0,1) mode starts propagating at around 2030.2m s�1 phase speed, it behaves as non-
dispersive up to 30 kHz and for increasing frequency its velocity drops down to the shear bulk wave speed of
the bitumen. As it can be seen from Fig. 2(b), the higher order Torsional modes, i.e. T(0,2), T(0,3), T(0,4)
and T(0,5), start propagating at their cut-off frequencies fcut

T(0,j) (fcut
T(0,2)

¼ 40.62 kHz, fcut
T(0,3)

¼ 71.85 kHz,
fcut
T(0,4)

¼ 103.31 kHz and fcut
T(0,5)

¼ 134.96 kHz) and for increasing frequency their energy velocity increases,
reaches a maximum and then decreases tending to the shear speed of the bitumen. Energy velocity maxima
occur where the phase velocity dispersion curves of the T(0,j) modes intersect the phase velocity curve of the
Te(0,1) mode. In Fig. 3, the mode shape, the power flow density component Pz

T(0,2) and the strain energy
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Fig. 3. T(0,2) guided mode for a copper (r ¼ 8900 kgm�3, cT ¼ 2240m s�1, kT ¼ 0Np l�1) pipe, with inner radius 6.80mm and wall

thickness 0.70mm, filled with elastic bitumen (r ¼ 970 kgm�3, cT ¼ 430m s�1, kT ¼ 0Npl�1) at different frequencies: (a) normalized

mode shape; (b) normalized power flow density Pz
T(0,2); (c) normalized strain energy density /ST(0,2)ST. Frequency for each column is

indicated at the top.
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density /ST(0,2)ST for the T(0,2) mode were calculated at five different frequencies to justify the energy
velocity peaks.

The mode shapes were normalized with respect to their maximum value. The cross-sectional distributions of
power flow density and strain energy density, calculated and represented within each element at the Gaussian
points, were normalized by the mode power flow PFT(0,2) at the calculation frequency fi. These normalizations
were necessary in order to compare results at different frequencies.

From Fig. 3 it can be observed that at a frequency slightly bigger than the mode cut-off frequency,
f1 ¼ 41.69 kHz, the T(0,2) mode shows little motion in the tube wall and high strain energy density in the core.
At around the cut-off frequency, in fact, the T(0,2) mode corresponds to a standing wave across the thickness,
and due to the large impedance difference between the core and the tube, the strain energy is mainly
concentrated in the core.

As the frequency increases, (f2 ¼ 45.01 kHz), the amount of displacement and power flow in the tube wall
slightly increases while the strain energy density decreases substantially.

At around f3 ¼ 53.26 kHz, where the T(0,2) and Te(0,1) phase velocity curves intersect, most of the energy
propagates in the tube rather than in the core where there is a minimum of strain energy density.

As the frequency increases further, displacement, power flow density and strain energy density in the pipe
wall decrease, and for very high frequency they are primarily confined in the core. For example, at
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f5 ¼ 80.12 kHz the T(0,2) mode behaves as a shear wave in the core with phase and energy velocities close to
the shear speed of the bitumen.

Therefore, according to Eq. (9) where the energy velocity is inversely proportional to the normalized energy
density, the maximum of this feature must occur at around f3 where the normalized strain energy is minimum.
A similar behavior, not reported here, has been obtained for the Torsional T(0,3), T(0,4) and T(0,5) modes at
different frequency ranges.

When the bitumen core is considered as viscoelastic, Fig. 2(d–f), all the independent 23 Torsional modes
Td (0,j) are damped (complex wavenumber). Among these solutions, only the Td (0,1) mode has attenuation
smaller than 130 dBm�1. This mode is generated by the coupling of the formerly undamped modes branch due
to the bitumen viscosity. Similar branch connection phenomena were observed in viscoelastic orthotropic and
isotropic plates [21,22]. This mode starts propagating at around 2029.2m/s phase speed. At increasing
frequency its velocity tends to the bulk shear speed of the copper as an opposite to the undamped T(0,i) modes
that were tending to the shear bulk wave speed of the bitumen.

The higher Td (0,j) j ¼ 2,3,y,23 modes propagate in the 0–150 kHz frequency range with non-zero phase
and energy velocity, and extend to the origin of the frequency axis at zero value. Each higher Td (0,j) mode,
below the fcut

T(0,i) cut-off frequencies of the equivalent undamped mode T(0,j), is characterized by attenuation
values (Fig. 2(f)) close to the one of the evanescent modes of the undamped case (Fig. 2(c)), and very small
energy velocity. Around the fcut

T(0,i) cut-off frequency, the attenuation of the damped mode reaches a minimum
and the energy velocity starts to increase. For increasing frequency, the mode attenuation grows linearly while
the energy velocity remains constant (see Fig. 2(e) and (f)).
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In Fig. 4 dispersion results for the undamped and damped systems are overlapped and represented in the
1900–2300m s�1 phase speed range, Fig. 4(a), and in the 0–130 dBm�1 attenuation range, Fig. 4(b). Modes
with attenuation larger than 130 dBm�1 are not shown. It can be noted that the behavior of the Td (0,1) mode
is in perfect agreement with the results proposed by Simonetti and Cawley [34], proving the reliability of the
proposed SAFE damped formulation.

Local maxima in the Td (0,1) attenuation spectrum occur around the mode cut-off frequencies of the
undamped system. Interestingly, the minima of Td (0,1) attenuation occur for those frequencies where the
phase velocity curves of T(0,j) and Te(0,1) mode intersect.

It is well known that in undamped waveguides the Poynting vector is parallel to the z-axis while for damped
media a non-zero radial component Pr

m appears. In the following, the link between Pr
m and mode attenuation

is analyzed.
In Fig. 5(a) the PTd ð0;1Þ

r component integrated over the waveguide cross-section O and normalized with
respect to the mode power flow PFTd ð0;1Þ is represented. It can be noted that this ratio presents a similar
behavior to the Td (0,1) mode attenuation shown in Fig. 4(b). In Fig. 5(b) and (c), are represented the
normalized Td (0,1) mode shapes and cross-sectional distributions of the radial power flow density,
respectively.
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At fd1 ¼ 40.97 kHz, where the Td (0,1) mode shows an attenuation peak, the normalized cross-sectional
distribution of the radial power flow density is maximum. In contrast at fd3 ¼ 55.24 kHz where a local
minimum of the normalized radial power flow takes place, the Td (0,1) mode attenuation minimum occurs.

5.2. Elastic steel pipe coated by a thin layer of viscoelastic bitumen

An elastic scheduled 4-in ANSI 40 steel pipe coated with a thin layer of viscoelastic bitumen was chosen
because it was studied in depth by Barshinger et al. [31,32]. In these references phase velocity and attenuation
dispersion curves for the Longitudinal modes with att(m)o10 dBm�1 were obtained by using a SPBW-based
formulation. Waveguide geometric and acoustic properties are given in Table 1. The bulk wave attenuations
for the viscoelastic bitumen were calculated as kL,S ¼ 2pcL,S(aL,S/o), where aL,S/o is given in Ref. [32].

According to the mesh criterion of Ref. [40] twelve finite elements across the steel pipe thickness and three
elements for the bitumen layer were used. For the Longitudinal modes, only the 62 ur and uz dof of the total
[nel� (nn�1)+1]� ndof ¼ 93 dof were used (nel ¼ 15) to formulate the wave equation.

In Fig. 6 SAFE results in terms of phase velocity, energy velocity and attenuation dispersion curves are
shown in the 0–1MHz frequency range. The results are in excellent agreement with those proposed in both
Refs. [31,32]. Here, in addition, the roots with att(m)410 dBm�1 are represented with a brighter color.

In the examined frequency range, among the independent 62 complex roots, the number of damped modes
with att(m)o10 dBm�1 range from 1 to 5 for increasing frequency. The phase and energy velocity dispersion
curve of these modes look quite similar to the phase and group velocity dispersion curves of an elastic 4-in 40
ANSI steel pipe. This is due to the fact that the bitumen coating is very thin in comparison with the elastic
pipe layer.
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examined in Ref. [32]. (a) Phase velocity, (b) energy velocity and (c) attenuation curves. Low attenuation points are highlighted with an
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In Fig. 6(c) it is interesting to note a high dispersive behavior of the attenuation curves. In this plot, three
frequency-mode combinations with particularly low attenuation values are highlighted with an ellipse. These
combinations have great potential for performing NDE tests in coated pipes as demonstrated experimentally
in Ref. [31].

From the energy velocity dispersion curves, Fig. 6(b), it can be noted that the L(0,4) mode exists also as a
‘‘backwards’’ wave where its phase and energy velocity have opposite signs. The attenuation of this
‘‘backwards’’ wave has negative values and it is not represented in Fig. 6(c).

Also for this second example, it can be seen in Fig. 7(a) that the radial power flow Pr
L(0,i) integrated over the

waveguide cross-section and normalized with respect to the modes power flow PFL(0,i) look like the dispersive
GUWs attenuation curves of Fig. 6(c). In Fig. 7(b) and (c) the normalized mode shapes and the normalized
cross-sectional distribution of the radial power flow density are represented at three different frequencies.

At f2 ¼ 749.69 kHz, where the L(0,3) attenuation curve has a minimum, both the uz displacement
component in the bitumen layer and the radial power flow distribution have a very small magnitude. These
features, have larger values at f1 and f3.

Some minor differences can be noted by comparing the SPBW results in Refs. [31,32] and the SAFE results
of Fig. 6. In Ref. [31] some solutions of the attenuation curves are missing resulting in interrupted or
discontinuous branches. The SAFE results show no missing roots. Furthermore, in Ref. [31] the attenuation
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for both L(0,1) and L(0,2) modes grows exponentially at around the L(0,2) mode cut-off frequency for the
equivalent undamped system (fcut

L(0,2)
¼ 15.74 kHz), while in the SAFE results the L(0,1) attenuation branch

extends to the origin of the frequency axis (see the inset in Fig. 6(c)). This behavior is expected since the
fundamental modes must have zero attenuation at zero frequency.

5.3. Viscoelastic steel strand embedded in post-tensioned concrete structures

Steel strands embedded in grout provide the necessary level of prestress in post-tensioned concrete
structures. Studying GUW propagation in these components is important to design effective NDE methods
for detecting defects and monitoring loads [25]. The aim of this SAFE simulation is to identify the modes
which have low attenuation as they propagate along the strand-grout-concrete waveguide (see Fig. 8) in order
to maximize the inspection coverage.

In this example the waveguide consists of a 15.24mm-diameter viscoelastic steel bar embedded in a
63.50mm outer diameter duct, completely full of viscoelastic grout, surrounded by a layer of concrete
with external diameter equal to 152.40mm. The present three-layer axial symmetric waveguide
models the prestressed concrete specimen represented in Fig. 8(a) and (b) which was the subject of several
experimental tests reported elsewhere [40]. The waveguide geometrical and acoustic properties are given in
Table 1.

For a maximum frequency fmax ¼ 700 kHz, the mesh criteria proposed in Ref. [40] required 7 finite elements
in the steel bar, 40 elements in the grout layer and 58 elements in the concrete layer. Only the 422 dof in the
radial and axial direction were used for the representation of the Longitudinal L(0,i) modes.

Fig. 9 shows the SAFE dispersion results for the Longitudinal modes in terms of phase velocity (a), energy
velocity (b) and attenuation (c). Roots with attenuation larger than 100 dBm�1 are marked with a brighter
color. The dispersion curves look quite complex if compared to the ones of the previous examples. In this case,
in fact, 422 damped roots are obtained at each frequency with the adopted mesh. However, some frequency-
mode combination with low attenuation can be easily found.

For example, highlighted in the insets of Fig. 9 are the three low attenuated modes (K, ., ’) at 305 kHz:
Fig

SA
K att ¼ 51.3 dBm�1, cph ¼ 3323.3m s�1, Ve ¼ 2408.6m s�1;
. att ¼ 59.3 dBm�1, cph ¼ 2855.1m s�1, Ve ¼ 2488.2m s�1;
’ att ¼ 61.7 dBm�1, cph ¼ 3079.2m s�1, Ve ¼ 2269.4m s�1.
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It can be seen that at around 305 kHz these modes have a maximum of energy velocity. This property is
useful to limit the effect of pulse dispersion and to reduce the risk of mode overlapping that generally

complicates the measurements. With low attenuation and low dispersive energy velocity, these modes are good
candidates for NDE of this system.

The mode with smallest attenuation (K) is also labeled as L(0,low-att) in Fig. 9(c), while the mode with
lowest phase speed at 305 kHz is highlighted L(0,low-cph) in Fig. 9(a). The L(0,low-cph) mode has a phase
speed cph ¼ 1713.6m s�1, attenuation equal to 157.9 dBm�1 and energy velocity Ve ¼ 1685.3m s�1.

Fig. 10 presents the normalized mode shapes, the normalized radial and axial power flow distribution, as
well as the normalized strain energy density for the L(0,low-cph) and L(0,low-att) modes at 305 kHz. It can be
seen that the L(0,low-cph) mode displacement, Fig. 10(a), is mainly in the radial direction with very little
displacement in the axial direction. Radial power flow and energies are confined to the grout layer. As a result,
the mode behaves as a shear wave traveling at a speed close to the shear bulk speed of the grout. From
Fig. 10(b), it can be noted that the L(0,low-att) displacements are concentrated within the steel rod and the
grout layer. The radial power flow is distributed between the steel and the grout with a transmission peak at
the interface. The energy for this mode is mainly flowing in the strand while only a small amount is present in
the grout. Therefore, traveling mainly in the less attenuating media, the mode has small attenuation at this
particular frequency.
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This kind of analysis can help designing an NDE system that makes use of guided modes with ultrasonic
energy mainly concentrated within the strand.

While SAFE computational time to obtain the results of the first and second examples is negligible, on the
order of a few seconds, it should be noted that the larger mesh adopted in the current example results in a
significant calculation time. The analysis carried out on a 2.6GHz Pentium 4 processor with 1GB of RAM
typically employs 100–120min in this case. The increase in the computational cost is mainly related to the
solution of the eigenvalue problems.

6. Conclusions

This paper proposes a SAFE formulation for modeling ultrasonic guided wave in axysimmetric waveguides.
The novelty over general SAFEs formulations is the possibility to model waveguides with material damping.
Damping is included at the element level by accounting for linear viscoelastic materials in force of the
correspondence principle.

The proposed SAFE formulation was successful in replicating the results of SPBW methods in layered
damped systems. Specific advantages of the damped SAFE algorithm compared to SPBW methods are: (i) the
complex roots are obtained with standard routines for eigenvalue problems that show no missing roots; (ii) the
formulation does not result in any instability for the bulk velocities of the materials, (iii) the ‘‘mode tracing’’
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problem is avoided since the energy velocity is obtained without considering adjacent solutions, (iv) different
rheological models can be easily accounted for viscoelastic materials without the need for reformulating the
governing equations.

Despite the advantages of the proposed SAFE formulation in modeling ultrasonic guided waves in damped
waveguides, an interested reader should be aware of the current limitations of the technique: (i) the
development of a SAFE formulation is limited to users with sufficient familiarity with Finite Element analysis;
(ii) the accuracy of the SAFE method is frequency and mesh dependent, where large meshes can lead to
computationally expensive eigenvalue problems; (iii) while SPBW-based formulations can account for
attenuation induced by wave energy leakage in a surrounding semi-medium current, SAFE frameworks
cannot accurately capture this source of energy dissipation until absorbing or infinite elements are successfully
implemented at the outer boundaries of the structure.
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